metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[bis(benzoato-κO)copper(II)]-μ-1,1'-(3-oxapentane-1,5diyl)diimidazole] monohydrate]

Guo-Hua Wei, Jie Liu, Hong-Ye Bai and Jin Yang*

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: yangjinnenu@yahoo.com.cn

Received 23 October 2007; accepted 16 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.046; wR factor = 0.123; data-to-parameter ratio = 14.7.

In the title compound, $\{[Cu(C_7H_5O_2)_2(C_{10}H_14N_4O)]\cdot H_2O\}_n$ or $\{[Cu(BA)_2(BIE)]\cdot H_2O\}_n$, where BA is the benzoate anion and BIE is 2,2'-bis(imidazolethyl), the Cu^{II} atom, which lies on an inversion centre, is coordinated in a square-planar geometry by two N atoms from two BIE ligands and two O atoms from two benzoate anions. The ether and water O atoms are located on twofold axes. The Cu^{II} atoms are linked *via* BIE ligands to form a one-dimensional chain structure along the *c* axis. The chains are further connected through hydrogen-bonding interactions between the water molecules and the carboxylate O atoms of the BA anions, resulting in a two-dimensional supramolecular network. The C atom and H atoms of the ethyl chain are disordered over two positions with refined occupancies of 0.583 (12) and 0.417 (12).

Related literature

For related literature, see: Yang et al. (2007); Yang, Ma et al. (2006); Yang, Yue et al. (2006).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_7H_5O_2)_2(C_{10}H_{14}N_4O) \end{bmatrix} \cdot H_2O \\ M_r = 530.04 \\ Monoclinic, P2/n \\ a = 11.4960 (15) \text{ Å} \\ b = 7.7400 (16) \text{ Å} \\ c = 13.609 (3) \text{ Å} \\ \beta = 103.140 (3)^{\circ} \end{bmatrix}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.901, T_{\rm max} = 0.907$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$wR(F^2) = 0.123$	independent and constrained
S = 1.10	refinement
2697 reflections	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
183 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1A\cdots O1^{i}$	0.85 (4)	2.08 (5)	2.862 (3)	153 (4)
Symmetry code: (i) $-x$ -	$+\frac{1}{2}$, $v_1 - z + \frac{1}{2}$			

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20060304) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2175).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, WI, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C. & Batten, S. R. (2007). Inorg. Chem. 46, 6542–6555.
- Yang, J., Ma, J. F., Liu, Y. Y., Ma, J. C., Jia, H. Q. & Hu, N. H. (2006). Eur. J. Inorg. Chem. pp. 1208–1215.
- Yang, J., Yue, Q., Li, G.-D., Cao, J.-J., Li, G.-H. & Chen, J.-S. (2006). Inorg. Chem. 45, 28570–2865.

 $V = 1179.2 \text{ (4) } \text{\AA}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.97 \text{ mm}^{-1}$ T = 293 (2) K $0.11 \times 0.11 \times 0.10 \text{ mm}$

2697 independent reflections 1980 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.054$

10769 measured reflections

supplementary materials

Acta Cryst. (2007). E63, m3146 [doi:10.1107/S160053680705996X]

catena-Poly[[[bis(benzoato-*KO*)copper(II)]-^{*μ*}-1,1'-(3-oxapentane-1,5-diyl)diimidazole] monohydrate]

G.-H. Wei, J. Liu, H.-Y. Bai and J. Yang

Comment

The design and synthesis of coordination polymers has received much attention due to their interesting structures and potential applications in ion exchange and gas storage (Yang, Yue *et al.*, 2006). In this regard, chain structures are particularly interesting (Yang *et al.*, 2007). We selected 2,2'-bis(imidazol)ether (BIE) as a bridging ligand, generating a new chain coordination polymer, {[Cu(BA)₂(BIE)]·H₂O}_n, whose structure is reported here.

In the title compound, the copper(II) atom, which lies on an inversion centre, displays a square-planar coordination geometry provided by two nitrogen atoms from two BIE ligands and two oxygen atoms from two distinct benzoate anions (Fig. 1). The Cu—O and Cu—N distances (Cu1—N1 = 1.985 (2) Å, Cu1–O2 = 1.968 (2) Å) are within their normal ranges (Yang, Ma *et al.*, 2006). The copper(II) centers are linked *via* BIE ligands to form a one-dimensional chain structure along the *c* axis (Fig. 2). The monodentate BA anions are located on both sides of the chain. The adjacent chains are further connected through hydrogen bonds between BA anions and water molecules (Table 2), thus forming a two-dimensional supramolecular network (Fig. 3). The ether (O3) and water (O1W) oxygen atoms lie on twofold axes. The C11, C12 carbon atom and attached H atoms are disordered over two positions with refined occupancies of 0.583 (12) and 0.417 (12).

Experimental

A mixture of CuCl₂·2H₂O (86.0 mg, 0.5 mmol) and NaOH (40 mg, 1 mmol) in 20 ml water was stirred for 10 min at room temperature, then the Cu(OH)₂ precipitate was filtered. HBA (122.0 mg, 1 mmol) was added to the Cu(OH)₂ suspension in C₂H₅OH/H₂O (1:4 ν/ν) with constant stirring for 1 h until a blue precipitate was obtained. The solid was filtered off and washed with water, then BIE (103.1 mg, 0.5 mmol) was added with stirring for 1 h to give a blue solution. Blue crystals of the title compound were obtained on slow evaporation of the solvent at room temperature.

Refinement

All H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.97 Å and U_{iso} = $1.2U_{eq}$ (C). The independent water H atom was located in a difference Fourier map and refined with U_{iso} (H) = $1.5U_{eq}$ (O) and with the O—H distance constrained to 0.85 Å.

Figures

Fig. 1. *ORTEP* view of title compound showing 50% probability ellipsoids. Symmetry code: (i) -x, -y, -z + 1; (ii) -x + 1/2, y, -z + 3/2.

Fig. 2. View of the one-dimensional polymeric chain of the title compound. H atoms are omitted for clarity.

Fig. 3. View of the two-dimensional supramolecular network *via* hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding are omitted for clarity.

catena-Poly[[[bis(benzoato-κO)copper(II)]-μ-1,1'- (3-oxapentane-1,5-diyl)diimidazole] monohydrate]

Crystal data	
$[Cu(C_7H_5O_2)_2(C_{10}H_{14}N_4O)]$ ·H ₂ O	$F_{000} = 550$
$M_r = 530.04$	$D_{\rm x} = 1.493 {\rm ~Mg~m}^{-3}$
Monoclinic, <i>P2/n</i>	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yac	Cell parameters from 7716 reflections
<i>a</i> = 11.4960 (15) Å	$\theta = 3.0 - 27.5^{\circ}$
b = 7.7400 (16) Å	$\mu = 0.97 \text{ mm}^{-1}$
c = 13.609 (3) Å	T = 293 (2) K
$\beta = 103.140 \ (3)^{\circ}$	Block, blue
V = 1179.2 (4) Å ³	$0.11\times0.11\times0.10~mm$
Z = 2	

Data collection

Rigaku RAXIS-RAPID diffractometer	2697 independent reflections
Radiation source: rotor target	1980 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.054$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.1^{\circ}$
φ and ω scans	$h = -14 \rightarrow 12$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -10 \rightarrow 10$
$T_{\min} = 0.901, \ T_{\max} = 0.907$	$l = -17 \rightarrow 17$

10769 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.123$	$w = 1/[\sigma^2(F_o^2) + (0.0457P)^2 + 0.8067P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
2697 reflections	$\Delta \rho_{max} = 0.44 \text{ e } \text{\AA}^{-3}$
183 parameters	$\Delta \rho_{min} = -0.51 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Defense of the location of the interval distribution of the second distribu	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cu1	0.0000	0.0000	0.5000	0.03667 (17)	
C1	0.0488 (3)	-0.3199 (5)	0.6225 (3)	0.0655 (10)	
H1	0.1290	-0.2915	0.6450	0.079*	
C2	-0.1193 (3)	-0.4557 (5)	0.6050 (3)	0.0616 (10)	
H2	-0.1777	-0.5356	0.6112	0.074*	
C3	-0.1333 (3)	-0.3151 (5)	0.5459 (3)	0.0590 (9)	
H3	-0.2051	-0.2808	0.5038	0.071*	
C4	0.2271 (2)	-0.0881 (4)	0.5132 (2)	0.0400 (6)	
C5	0.3558 (2)	-0.1290 (4)	0.5583 (2)	0.0403 (6)	
C6	0.4217 (3)	-0.2260 (5)	0.5036 (2)	0.0508 (8)	
H6	0.3858	-0.2661	0.4394	0.061*	
C7	0.5408 (3)	-0.2624 (6)	0.5451 (3)	0.0649 (10)	
H7	0.5844	-0.3279	0.5087	0.078*	
C8	0.5948 (3)	-0.2028 (6)	0.6391 (3)	0.0669 (10)	
Н8	0.6750	-0.2266	0.6660	0.080*	

supplementary materials

C9	0.5303 (3)	-0.1074 (5)	0.6939 (3)	0.0620 (10)	
Н9	0.5670	-0.0660	0.7575	0.074*	
C10	0.4102 (3)	-0.0734 (5)	0.6537 (2)	0.0501 (8)	
H10	0.3662	-0.0123	0.6917	0.060*	
C11	0.0454 (8)	-0.6286 (12)	0.6974 (8)	0.050 (3)	0.417 (12)
H11A	-0.0168	-0.6987	0.7149	0.060*	0.417 (12)
H11B	0.0824	-0.6922	0.6512	0.060*	0.417 (12)
C12	0.1351 (9)	-0.5730 (14)	0.7888 (8)	0.052 (3)	0.417 (12)
H12A	0.1543	-0.6674	0.8366	0.062*	0.417 (12)
H12B	0.1049	-0.4769	0.8214	0.062*	0.417 (12)
C11'	0.0548 (7)	-0.5492 (11)	0.7543 (7)	0.060 (2)	0.583 (12)
H11C	0.0745	-0.4648	0.8082	0.072*	0.583 (12)
H11D	-0.0016	-0.6309	0.7713	0.072*	0.583 (12)
C12'	0.1665 (7)	-0.6430 (10)	0.7439 (7)	0.067 (2)	0.583 (12)
H12C	0.1908	-0.7266	0.7978	0.081*	0.583 (12)
H12D	0.1538	-0.7025	0.6796	0.081*	0.583 (12)
N1	-0.0276 (2)	-0.2293 (3)	0.55599 (18)	0.0416 (6)	
N2	-0.0022 (3)	-0.4574 (4)	0.6540 (3)	0.0697 (10)	
01	0.18108 (18)	-0.1261 (3)	0.42329 (15)	0.0494 (5)	
O2	0.16920 (18)	-0.0139 (3)	0.57095 (15)	0.0431 (5)	
O3	0.2500	-0.5163 (5)	0.7500	0.0835 (14)	
O1W	0.2500	-0.2648 (5)	0.2500	0.0689 (10)	
H1A	0.263 (5)	-0.193 (4)	0.207 (3)	0.103*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0352 (3)	0.0402 (3)	0.0364 (3)	0.0039 (2)	0.0117 (2)	0.0030 (2)
C1	0.0405 (17)	0.071 (2)	0.087 (3)	0.0054 (17)	0.0194 (17)	0.038 (2)
C2	0.054 (2)	0.052 (2)	0.079 (3)	-0.0057 (16)	0.0169 (19)	0.0142 (18)
C3	0.0481 (18)	0.057 (2)	0.067 (2)	-0.0066 (16)	0.0034 (16)	0.0101 (18)
C4	0.0366 (14)	0.0382 (16)	0.0452 (16)	-0.0012 (12)	0.0097 (13)	0.0063 (13)
C5	0.0372 (14)	0.0417 (16)	0.0419 (15)	0.0005 (13)	0.0086 (12)	0.0078 (13)
C6	0.0413 (16)	0.063 (2)	0.0479 (17)	0.0043 (15)	0.0099 (13)	-0.0028 (16)
C7	0.0435 (17)	0.089 (3)	0.065 (2)	0.0157 (19)	0.0173 (17)	0.001 (2)
C8	0.0405 (17)	0.097 (3)	0.060 (2)	0.0116 (19)	0.0038 (16)	0.006 (2)
C9	0.0521 (19)	0.078 (3)	0.0486 (18)	-0.0012 (19)	-0.0027 (16)	-0.0014 (18)
C10	0.0482 (17)	0.0537 (19)	0.0476 (17)	0.0018 (15)	0.0094 (14)	-0.0010 (15)
C11	0.058 (5)	0.043 (5)	0.045 (5)	-0.009 (4)	0.004 (4)	0.002 (4)
C12	0.062 (6)	0.046 (5)	0.044 (5)	0.003 (5)	0.007 (5)	0.011 (4)
C11'	0.063 (4)	0.061 (5)	0.054 (5)	-0.002 (4)	0.007 (4)	0.023 (4)
C12'	0.077 (5)	0.047 (4)	0.067 (5)	0.013 (4)	-0.007 (4)	-0.005 (4)
N1	0.0395 (12)	0.0442 (14)	0.0434 (13)	0.0037 (11)	0.0144 (11)	0.0043 (11)
N2	0.0497 (16)	0.0665 (19)	0.098 (2)	0.0122 (15)	0.0279 (17)	0.0449 (18)
01	0.0429 (11)	0.0594 (14)	0.0441 (11)	0.0040 (10)	0.0060 (9)	-0.0014 (10)
O2	0.0371 (10)	0.0495 (12)	0.0434 (11)	0.0060 (9)	0.0104 (9)	0.0045 (9)
O3	0.053 (2)	0.058 (2)	0.121 (4)	0.000	-0.019 (2)	0.000
O1W	0.095 (3)	0.063 (2)	0.053 (2)	0.000	0.026 (2)	0.000

Geometric parameters	(Å,	°)	
----------------------	-----	----	--

Cu1—O2	1.968 (2)	С8—Н8	0.9300
Cu1—O2 ⁱ	1.968 (2)	C9—C10	1.389 (4)
Cu1—N1	1.985 (2)	С9—Н9	0.9300
Cu1—N1 ⁱ	1.985 (2)	C10—H10	0.9300
C1—N1	1.311 (4)	C11—C12	1.487 (16)
C1—N2	1.333 (4)	C11—N2	1.502 (9)
C1—H1	0.9300	C11—H11A	0.9700
C2—C3	1.341 (5)	C11—H11B	0.9700
C2—N2	1.360 (5)	C12—O3	1.591 (10)
С2—Н2	0.9300	C12—H12A	0.9700
C3—N1	1.364 (4)	C12—H12B	0.9700
С3—Н3	0.9300	C11'—C12'	1.509 (14)
C4—O1	1.252 (3)	C11'—N2	1.546 (8)
C4—O2	1.276 (3)	C11'—H11C	0.9700
C4—C5	1.501 (4)	C11'—H11D	0.9700
C5—C10	1.376 (4)	C12'—O3	1.362 (8)
C5—C6	1.396 (4)	C12'—H12C	0.9700
C6—C7	1.386 (4)	C12'—H12D	0.9700
С6—Н6	0.9300	O3—C12' ⁱⁱ	1.362 (8)
С7—С8	1.369 (5)	O3—C12 ⁱⁱ	1.591 (10)
С7—Н7	0.9300	O1W—H1A	0.85 (4)
C8—C9	1.380 (5)		
O2—Cu1—O2 ⁱ	180.0	C12—C11—H11B	111.5
O2—Cu1—O2 ⁱ O2—Cu1—N1	180.0 89.37 (9)	C12—C11—H11B N2—C11—H11B	111.5 111.5
O2—Cu1—O2 ⁱ O2—Cu1—N1 O2 ⁱ —Cu1—N1	180.0 89.37 (9) 90.63 (9)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B	111.5 111.5 109.3
O2—Cu1—O2 ⁱ O2—Cu1—N1 O2 ⁱ —Cu1—N1 O2—Cu1—N1 ⁱ	180.0 89.37 (9) 90.63 (9) 90.63 (9)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3	111.5 111.5 109.3 105.8 (8)
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A	111.5 111.5 109.3 105.8 (8) 110.6
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A	111.5 111.5 109.3 105.8 (8) 110.6 110.6
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \\ N1-C1-H1 \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \\ N1-C1-H1 \\ N2-C1-H1 \\ \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 124.0	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 108.7
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \\ N1-C1-H1 \\ N2-C1-H1 \\ C3-C2-N2 \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 124.0 105.8 (3)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—N2	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 108.7 109.7 (7)
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \\ N1-C1-H1 \\ N2-C1-H1 \\ C3-C2-N2 \\ C3-C2-H2 \\ \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 124.0 105.8 (3) 127.1	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—N2 C12'—C11'—H11C	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 108.7 109.7 (7) 109.7
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \\ N1-C1-H1 \\ N2-C1-H1 \\ N2-C1-H1 \\ C3-C2-N2 \\ C3-C2-H2 \\ N2-C2-H2 \\ \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 124.0 105.8 (3) 127.1 127.1	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—H2B C12'—C11'—H11C N2—C11'—H11C	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 108.7 109.7 (7) 109.7 109.7
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \\ N1-C1-H1 \\ N2-C1-H1 \\ C3-C2-N2 \\ C3-C2-H2 \\ N2-C2-H2 \\ N2-C2-H2 \\ C2-C3-N1 \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 124.0 124.0 105.8 (3) 127.1 127.1 110.6 (3)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—H12B C12'—C11'—H11C N2—C11'—H11C C12'—C11'—H11D	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 108.7 109.7 (7) 109.7 109.7
$\begin{array}{c} O2-Cu1-O2^{i} \\ O2-Cu1-N1 \\ O2^{i}-Cu1-N1 \\ O2-Cu1-N1^{i} \\ O2^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \\ N1-C1-H1 \\ N2-C1-H1 \\ C3-C2-N2 \\ C3-C2-H2 \\ N2-C2-H2 \\ N2-C2-H2 \\ C2-C3-N1 \\ C2-C3-H3 \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 124.0 105.8 (3) 127.1 127.1 110.6 (3) 124.7	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—H12B C12'—C11'—H11C N2—C11'—H11D N2—C11'—H11D	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 108.7 109.7 (7) 109.7 109.7 109.7 109.7
$\begin{array}{c} 02-Cu1-O2^{i} \\ 02-Cu1-N1 \\ 02^{i}-Cu1-N1 \\ 02-Cu1-N1^{i} \\ 02^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \\ N1-C1-H1 \\ N2-C1-H1 \\ N2-C1-H1 \\ C3-C2-N2 \\ C3-C2-H2 \\ N2-C2-H2 \\ N2-C2-H2 \\ C2-C3-N1 \\ C2-C3-H3 \\ N1-C3-H3 \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 105.8 (3) 127.1 127.1 110.6 (3) 124.7 124.7	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—H12B C12'—C11'—H11C N2—C11'—H11C N2—C11'—H11D H11C—C11'—H11D	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 108.7 109.7 (7) 109.7 109.7 109.7 109.7 109.7 109.7
$\begin{array}{c} 02-Cu1-O2^{i} \\ 02-Cu1-N1 \\ 02^{i}-Cu1-N1 \\ 02^{i}-Cu1-N1^{i} \\ 02^{i}-Cu1-N1^{i} \\ N1-Cu1-N1^{i} \\ N1-C1-N2 \\ N1-C1-H1 \\ N2-C1-H1 \\ C3-C2-N2 \\ C3-C2-H2 \\ N2-C2-H2 \\ N2-C2-H2 \\ C2-C3-N1 \\ C2-C3-H3 \\ N1-C3-H3 \\ 01-C4-O2 \\ \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 124.0 105.8 (3) 127.1 127.1 110.6 (3) 124.7 124.7 122.9 (3)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—H12B C12'—C11'—H11C N2—C11'—H11C N2—C11'—H11D H11C—C11'—H11D H11C—C11'—H11D O3—C12'—C11'	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 108.7 109.7 (7) 109.7 109.7 109.7 109.7 109.7 109.7 109.7
$\begin{array}{c} 02-Cu1-O2^{i} \\ 02-Cu1-N1 \\ 02^{i}-Cu1-N1 \\ 02^{i}-Cu1-N1^{i} \\ 02^{i}-Cu1-N1^{i} \\ 02^{i}-Cu1-N1^{i} \\ N1-Cu-N2 \\ N1-C1-N2 \\ N1-C1-H1 \\ N2-C1-H1 \\ C3-C2-N2 \\ C3-C2-H2 \\ N2-C2-H2 \\ N2-C2-H2 \\ C2-C3-N1 \\ C2-C3-H3 \\ N1-C3-H3 \\ 01-C4-O2 \\ 01-C4-C5 \\ \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 105.8 (3) 127.1 127.1 110.6 (3) 124.7 124.7 122.9 (3) 120.6 (3)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—H12B C12'—C11'—H11C N2—C11'—H11C N2—C11'—H11D N2—C11'—H11D H11C—C11'—H11D O3—C12'—C11' O3—C12'—C11'	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 108.7 109.7 (7) 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7
$\begin{array}{c} 02-Cu1-O2^{i}\\ 02-Cu1-N1\\ 02^{i}-Cu1-N1\\ 02^{i}-Cu1-N1^{i}\\ 02^{i}-Cu1-N1^{i}\\ 02^{i}-Cu1-N1^{i}\\ N1-Cu1-N2\\ N1-C1-N2\\ N1-C1-H1\\ N2-C1-H1\\ C3-C2-N2\\ C3-C2-H2\\ N2-C2-H2\\ C2-C3-N1\\ C2-C3-H3\\ N1-C3-H3\\ 01-C4-O2\\ 01-C4-C5\\ 02-C4-C5\\ \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 124.0 105.8 (3) 127.1 127.1 110.6 (3) 124.7 124.7 124.7 122.9 (3) 120.6 (3) 116.5 (3)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—H12B C12'—C11'—H11C N2—C11'—H11C N2—C11'—H11D H11C—C11'—H11D H11C—C11'—H11D O3—C12'—C12' ⁱⁱ C11'—C12'—C12' ⁱⁱ	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 108.7 109.7 (7) 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 108.2 104.5 (7) 46.1 (4) 149.4 (6)
$\begin{array}{c} 02-Cu1-O2^{i}\\ 02-Cu1-N1\\ 02^{i}-Cu1-N1\\ 02^{i}-Cu1-N1^{i}\\ 02^{i}-Cu1-N1^{i}\\ 02^{i}-Cu1-N1^{i}\\ N1-Cu1-N2\\ N1-C1-N2\\ N1-C1-H1\\ N2-C1-H1\\ C3-C2-N2\\ C3-C2-H2\\ N2-C2-H2\\ N2-C2-H2\\ N2-C2-H2\\ N2-C3-N1\\ C2-C3-N1\\ C2-C3-H3\\ N1-C3-H3\\ 01-C4-O2\\ 01-C4-C5\\ 02-C4-C5\\ C10-C5-C6\\ \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 124.0 105.8 (3) 127.1 127.1 110.6 (3) 124.7 122.9 (3) 120.6 (3) 116.5 (3) 119.1 (3)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—H12B C12'—C11'—H11C N2—C11'—H11C N2—C11'—H11D H11C—C11'—H11D H11C—C11'—H11D O3—C12'—C12' ⁱⁱ C11'—C12'—C12 ⁱⁱ C11'—C12'—C12 ⁱⁱ O3—C12'—H12C	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 110.6 108.7 109.7 (7) 109.7 100.7 100.7 100.7 100.7 100.7 100.7 1000
$\begin{array}{c} 02-Cu1-O2^{i}\\ 02-Cu1-N1\\ 02^{i}-Cu1-N1\\ 02^{-}-Cu1-N1^{i}\\ 02^{i}-Cu1-N1^{i}\\ 02^{i}-Cu1-N1^{i}\\ N1-Cu-N2\\ N1-Cu-N2\\ N1-C1-H1\\ N2-C1-H1\\ C3-C2-N2\\ C3-C2-H2\\ N2-C2-H2\\ N2-C2-H2\\ C2-C3-N1\\ C2-C3-N1\\ C2-C3-H3\\ N1-C3-H3\\ 01-C4-O2\\ 01-C4-C5\\ 02-C4-C5\\ C10-C5-C6\\ C10-C5-C6\\ C10-C5-C4\\ \end{array}$	180.0 89.37 (9) 90.63 (9) 90.63 (9) 89.37 (9) 180.0 112.0 (3) 124.0 105.8 (3) 127.1 127.1 110.6 (3) 124.7 122.9 (3) 120.6 (3) 116.5 (3) 119.1 (3) 121.0 (3)	C12—C11—H11B N2—C11—H11B H11A—C11—H11B C11—C12—O3 C11—C12—H12A O3—C12—H12A C11—C12—H12B O3—C12—H12B H12A—C12—H12B C12'—C11'—H12B C12'—C11'—H11C N2—C11'—H11C N2—C11'—H11D N2—C11'—H11D H11C—C11'—H11D O3—C12'—C12' ⁱⁱ C11'—C12'—C12' ⁱⁱ O3—C12'—H12C C11'—C12'—H12C	111.5 111.5 109.3 105.8 (8) 110.6 110.6 110.6 110.6 108.7 109.7 (7) 109.7 100.7 100.7 100.7 100.7 100.7 100.7 1000

supplementary materials

C7—C6—C5	119.8 (3)	O3—C12'—H12D	110.9
С7—С6—Н6	120.1	C11'—C12'—H12D	110.9
С5—С6—Н6	120.1	C12 ^{,ii} —C12'—H12D	91.2
C8—C7—C6	120.6 (3)	H12C—C12'—H12D	108.9
С8—С7—Н7	119.7	C1—N1—C3	104.5 (3)
С6—С7—Н7	119.7	C1—N1—Cu1	127.1 (2)
С7—С8—С9	120.0 (3)	C3—N1—Cu1	127.8 (2)
С7—С8—Н8	120.0	C1—N2—C2	107.0 (3)
С9—С8—Н8	120.0	C1—N2—C11	133.1 (4)
C8—C9—C10	119.8 (3)	C2—N2—C11	115.7 (4)
С8—С9—Н9	120.1	C1—N2—C11'	121.5 (4)
С10—С9—Н9	120.1	C2—N2—C11'	127.7 (4)
C5—C10—C9	120.7 (3)	C4—O2—Cu1	108.55 (18)
C5-C10-H10	119.7	C12 ^{,ii} —O3—C12'	87.8 (7)
C9—C10—H10	119.7	C12'—O3—C12 ⁱⁱ	114.1 (8)
C12—C11—N2	101.3 (8)	C12 ^{,ii} —O3—C12	114.1 (8)
C12—C11—H11A	111.5	C12 ⁱⁱ —O3—C12	148.0 (9)
N2-C11-H11A	111.5		
Symmetry codes: (i) $-x$, $-y$, $-z+1$; (ii) $-x$	x+1/2, y, -z+3/2.		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1A····O1 ⁱⁱⁱ	0.85 (4)	2.08 (5)	2.862 (3)	153 (4)
Symmetry codes: (iii) $-x+1/2$, y, $-z+1/2$.				

Fig. 1

Fig. 3